SOME POINTS CONCERNING THE SHIELDING
OF THERMAL RADIATION

L, A, Vadachkoriya UDC 535,211

General equations are proposed here which describe the effect of shields on the radiative
heat transfer in a closed system consisting of two gray surfaces of any shape, and calculation
formulas are derived for a few specific cases of such a system,

Shields are placed between insulated surfaces in order to reduce the radiative heat transmission be-
tween the latter, Particularly importantis the shielding in high-vacuum thermally-insulated systems, where
heat is transmitted primarily through radiation. High-vacuum thermal insulation has been widely used as
both an industrial and a laboratory technique. A situation most often encountered is the one where two sur-
faces comprising a closed system are insulated from one another,

Specific examples of thermal radiation shielding are dealt with in the published literature [1, 2, 3]
and questions concerning the effect of "floating" shields, i.e., shields immune to heat transmitted from ex-
traneous sources of energy, on the radiative heat transfer are discussed M4, 5].

In this article an attempt will be made to answer, in a form convenient for practical calculations, the
question concerning the effect of shields on theradiativeheat transfer in a closed system of two gray sur-
faces. Only steady-state heat-transfer processes will be considered, where the temperatures of the bodies
in question and the heat fluxes remain constant with time; all surfaces which participate in the heat transfer
will be assumed to be gray, and the surface temperature of any shield will be assumed constant and equal
to the temperature at which that shield would affect the total heat transfer as in the case of an actual tem-
perature field, The thermal conductance of residual gases and thermal resistance of shield walls will be
disregarded; the shape and the characteristics of extraneous sources of energy (heating due to penetrating
radiation or due to electric current flow, heating or cooling by circulating liquids or gases or through me-
chanical contact) will not be considered as such,but an equivalent heat flux resulting from these sources will
be introduced instead, '

In Fig.1 are shown two surfaces A and B (Tp > Tp) which make up a closed system, Between them
have been placed n shields which divide the system AB into @ + 1) closed systems, The direction from A
toward B is taken as positive, and the shields as well as the closed systems they form will be counted in
that order. The closed system AB as it exists without shields will be denoted by the index "o !

A steady-state condition implies that each shield is at a thermal equilibrium:

Pp=Pps + Qs 8
and, by virtue of the Radiation Law, for each closed system:
B = 0 Ho (Tt — Th). @
where
Eeq, m 1/[1 + (1/8;;:—] - l) (Pm——l,m + (1/8,;, - 1) q’m,m~l]7
and

Hm = (Pm—l,mFm-—l = (Pm,m—lF’"'
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In our case there are n equations of the (1) kind and @ + 1)
equations of the 2) kind, Their simultaneous solution will make
it possible to determine the resultant radiative heat flux in each
closed system and the temperature of each shield, considering
also the initial conditions: the optical characteristics and the ge-
ometry of the surfaces participating in the heat transfer,the tem-
peratures of surfaces A and B, as well as the extraneous effects
on the shield,

Omitting all mathematical step-by-step transformations, we
show the final equations:
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In accordance with Eq, (3), the resultant heat flux radiated from any of the (@ + 1) closed systems is
equal to the algebraic sum of three components, The first component of the heat flux is a consequence of
the temperature difference between surfaces A and B, the second component is due to extraneous effects
upon the shields located before the given system, and the third component is due to extraneous effects upon
the shields located behind that system.

In accordance with Eq, (4), the temperature of any shield is determined by: the temperature of surface
A, the temperature of surface B, the extraneous effects upon the shields located before that given shield,
and the extraneous effects upon that given shield and the shields located behind it,

The products in (3) and (4) of the emissivities of all the closed systems and the areas of correspond-
ing mutually-irradiating surfaces are equal to:

I H 1 . 1

EapH 45 =

ntl AB T T aH = T E—
E 1 \'__ | T S
8eqviHi/Hf‘lB d e H. eeq.1H1 I':et?[.n+1[—in+1
{=] Fay) eq i .
1 1 (5)
aAmHAm = m ’ SmBHmB =TT etc,
) oo )
damd e, H; P geq,if1;

In order to determine the resultant radiative heat fluxes on surfaces A and B, the appropriate num-
bers for the index "m," i.e.,, m = 1 and m =n + 1, arenow inserted into Eq. (3). After necessary transforma-
tions we will obtain:

- e, H
(I’A:@l:UoSABHAB(Ti""Tg)—EQk eABHAB (6)
o (5 3007:]
and
’ : N, eapfap
Pp = Py = Oeupllyp (Ti—Th) + }_‘ ka . (7

k=]
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TABLE 1. Calculation Formulas for the Case of Parallel Surfaces
A and B Large as Compared to the Distance between Them:
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A steady-state condition implies that the entire system must be at a thermal equilibrium, i.e.
n
Py — D, =3 Q.
k=]

The validity of the expression can be easily checked by substituting in it the values for &4 and &g.
The result, after minor transformations, is

Yo+ Yot - Yo
k=1

Here as well as in Egs. (3), @), (6), and (7) the dimensionless complex coefficient SABHAB/sAkHAk
defines that fraction of the heat flux transmitted to a shield from extraneous sources of energy which, in

16



TABLE 2. Calculation Formulas for the Case of Body A and
Shields 1 to n Enclosed Inside Body B with No Inner Surfaces of
any Closed System thus Formed Havmg Concavities: €5 =
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the final analysis (as a result of radiative heat transfer), is imparted to surface B, while the ratio esgHaR
/exgHip represents the fraction imparted to surface A.

It is evident that the conditions for a most effective shielding (number of shields, their geometry and
optical characteristics, also the influence of extraneous sources of energy) of surface A or B should be found
from the equation &, = 0 or &p = 0 respectively.

The degree of shielding can be evaluated on the basis of the ratio &5/&, < 1 for surface A and &p/®,
< 1 for surface B, Here

Dy == Ot oy (Th —Th)

is the resultant radiative heat flux transmitted from A to B when there are no shields between these two sur-
faces, and Hy = Hpp.
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TABLE 3, Calculation Formulas for the Case of Body B and
Shields n to 1 Enclosed Inside Body A with No Inner Surface of any
Closed System thus Formed Having Concavities: €5 =...= €},
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The resultant heat flux transmitted to any shield is a function of the shield location, in the general
case written down as

Ql'. = s‘ o.t: (x, Y, Z) dv.

v

) fQy=.,..=Qp =...=Q, =0, we are dealing with "floating” shields, Here &p =...=&y =
=&, = & and (3), (6), and (7) are replaced by the same single expression

D = 04 H 5 (Th—TH),
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while Eq. (4) becomes
1
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Taking all this into account, the general Eqgs, (3), @), (6), and (7) can be rewritten as follows
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Here & and T}, are the resultant radiative heat flux and the temperature of shield m at the same initial
conditiong, only now the shields are immune to the influence of extraneous sources of energy
Q, i.e., the shields receive equal heat fluxes from extraneous sources
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of energy, then Egs. (3), @), (6), and (7) become, after respective transformations
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for e < m,
Let us consider some of the most common practical cases,
1. A and B are parallel planes, very large as compared to the distance between them: &, =
=Fy=Fn =...=Fg=F,

=s'r'n:..,:eB:sandFA=...
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In this case

Pa=Pa= "= Cp=9p,=1; Hy==H, = Hy=-=Hg=F
and t‘éq’, R A 2i -
Substitution into Eq, (5} yields:
1 1 1 .
Eip = mseq. Eam = ?Eeq‘. &up = n_mil 8eq, ©t¢

These expressions are valid for diffusely reflecting as well as for mirror surfaces.
In Table 1 are given calculation formulas for this case.

2, Body A and shields 1 to n are located inside body B (see the picture in Table 2) in such a way that
no inner surface of any closed system thus formed has concavities: epA =...=¢ep =¢el, =...=¢g =&
Fi, = Fl = Fp, and FA/Fy = Fy/Fy = ..., = Fp/Fp = o.

I the surfaces are diffusely reflecting, then ¢p, = @13 ="...=¢nB=1, Q1A =@ =...= ¢py = @,
Hy =Hap =Hpp = FA, Hy = Fryy -y, Hyp = Fyy ete., and 9eoj,1 =...=¢%eq,n+ = Eeq = e/(1+ (@1 —¢)g).

If the surface are mirrors in the shape of concentric spheres or long coaxial cylinders, then their
emigsivities will be [6]:

[

"-'eq,l izl oeee == qu,n»ﬂ = seq—_: _é—_.—g ,
and their mutually-irradiating surface areas will be the same,
Inserting into Eq, (5) we have
l—g . l—¢ __1—9
Eap = T_ (Ph'+1 beq' BA’IA B 1— q}m beq, SmB = [ (pn-—nrl‘i Eeqetc.

In Table 2 are given calculation formulas for this case,

3. Body B and the shields for n to 1 are inside body A (see the picture in Table 3) in such a way that
no inner surface of any closed system thus formed has concavities: Ep=...=8 =€l =, . =¢eg=¢§
F, = F, = Fpy and Fy/Fp = F/Fy =. ., =Fg/Fy = o.

In this case pp; = @ =. .. = 9nB =@ Q1A = 931 =...=¢Bn =1; Hy = Fi; Hyy = Fiy; HAB = FB;
Ham = Fs Hyp = Fpi Hpy = Fi eté.,and the given emissivities are the same as in case 2,

In Table 3 are given calculation formulas for this case.

The equations derived here make it possible to examine the phenomenon of radiative heat transfer
and to determine the conditions of most effective shielding in a closed system which comprises two surfaces
of any shape, when the shields placed between these surfaces can be subject to additional heat effects from
extraneous sources of energy.

NOTATION

Tp,Tg, Fa, Fg. €A, €R = are the temperatures (K), the areas (m?, and the emissivities of surfaces A and
B;

Tm is the temperature of shield m;

T is the temperature of the same shield without extraneous influences;

Fios € are the area and the emissivity of a shield surface exposed to A;

Fh. €8 are the area and the emissivity of a shield surface exposed to B;

€eq, i is the equivalent emissivity of a closed system i;

&ik is the equivalent emigsivity of closed systems i-k;

Pik is the mean angular coefficient of radiation from surface F; to surface Fy;

Hjj is the area of a mutually-irradiating surface in a closed system ik without any other
bodies present;

Q ig the net heat flux to a shield, positive (kcal/h);
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is the net radiative heat flux in a closed system m (flux to B positive, flux to A negative) (keal/h);
is the absolute black-body radiation constant, 4,9-1078 keal/m? - h . deg’

is the specific heat flux transmitted to unit volume k of a shield from extraneous sources of energy;
are the space coordinates,
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